

Customize service and solution for wireless transportation products

Bluetooth Module Hardware Datasheet BTM4504C1H

Chongqing JINOU Science and Technology Development Co., Ltd.

Contents

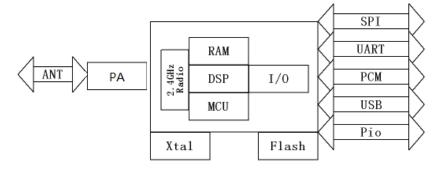
1.	Fea	tures1
2.	Pro	duct Description1
3.	App	lications1
4.	Blo	ck Diagram2
5.	Pin	Descriptions2
	5.1	Device Terminal2
	5.2	Device Terminal Functions2
6.	Ele	ctrical Specifications4
	6.1	Input/Output Terminal Characteristics4
	6.2	Auxilliary ADC4
	6.3	Absolute Maximum ratings5
	6.4	Power Consumption (Don' t use AP)5
7.	Rad	io Characteristics - Basic Data Rate6
	7.1	Transmitter6
	7.2	Receiver7
8.	UAR	T Interface
	8.1	UART Bypass10
	8.2	UART Configuration While RESET is Active10
	8.3	UART Bypass Mode10
	8.4	Current Consumption in UART Bypass Mode11
9.	I/0	Parallel Ports11
10.	RES	ETB11
	10.1	Pin States on Reset12
	10.2	Status after Reset12
11.	Sol	der Profiles12
12.	Phy	sical Dimensions14
13.	Gui	de for Antenna Radiation15

BTM4504C1H

Bluetooth Module Class 1

1. Features

- 1.1 Operating Frequency Band 2.40 GHz².48GHz unlicensed ISM Band
- 1.2 Class 1 type Output Power
- 1.3 UART Host Interface
- 1.4 Low Voltage Power Supply, 2.7V to 3.6V
- 1.5 Nominal Supply Voltage at $3.3\pm0.1V$
- 1.6 Low Power Modes Available: Park, Sniff, Hold and Deep Sleep
- 1.7 Size: 27.3mm \times 14.5 (unit: mm Error = \pm 0.2mm)


2. Product Description

The BC04 Bluetooth Module (BTM4504C1H) is a Class 1 Bluetooth module using BlueCore4-External chipset from leading Bluetooth chipset supplier, Cambridge Silicon Radio. It provides a fully compliant Bluetooth system for data and voice communications. Interfaces with a host via USB or UART and support full data rate up to 3Mbps modulation modes. Voice interface supported PCM protocol. The module and device firmware is fully compliant with the Bluetooth specification v2.1.

3. Applications

- 3.1 PCs, PDAs
- 3.2 Computer Accessories (CF Cards, USB DonglesPCMCIA, RS232 Adaptors, etc.)
- 3.3 Mice, Keyboard, Joysticks
- 3.4 Cordless Phone
- 3.5 FAX, Printer Adaptors
- 3.6 Digital Camera
- 3.7 Access Points to LAN and/or Dial-up network

4. Block Diagram

5. Pin Descriptions .

5.1	Device Term	ninal			
No.	Des	37	38	Des	No.
		GND	GND		
36	GND	37	38	ANT	1
35	GND	37]36	1 <u> </u>	GND	2
34	GND		2	Pio2	3
33	GND	 	3:4	Pio3	4
32	Aio0			Pio4	5
31	Aio1			Pio5	6
30	RESET			Pio6	7
29	SPI-MISO		: : :	Pio7	8
28	SPI-CSB			Pio8	9
27	SPI-CLK			Pio9	10
26	SPI-MOSI			Pio10	11
25	UART-CTS		:_ <u>-</u>	Pio11	12
24	UART-TX] .		USB-DN	13
23	UART-RTS			USB-DP	14
22	UART-RX			PCM-CLK	15
21	Vref-Filter		:	PCM-IN	16
20	Vcc			PCM-SYN	17
19	GND			PCM-OUT	18

5.2 Device Terminal Functions

PIN	NAME	ТҮРЕ	DESCRIPTION
1	ANT	Analogue	Single ended receiver input

24	UART_TX	CMOS output, tri-state, with weak internal pull-up	UART data output
22	UART_RX	CMOS input with weak internal pull-down	UART data input
23	UART_RTS	CMOS output, tri-state, with weak internal pull-up	UART request to send active low
25	UART_CTS	CMOS input with weak internal pull-down	UART clear to send active low
14	USB_DP	Bi-directional	USB data plus with selectable internal 1.5k. pull-up resistor
13	USB_DN	Bi-directional	USB data minus
18	PCM_OUT	CMOS output, tri-state, with weak internal pull-down	Synchronous data output
16	PCM_IN	CMOS input, with weak internal pull-down	Synchronous data input
17	PCM_SYN	Bi-directional with weak internal pull-down	Synchronous data sync
15	PCM_CLK	Bi-directional with weak internal pull-down	Synchronous data clock
3	Pio2	Bi-directional with programmable strength internal pull-up/down	Programmable Input/Output Line
4	Pio3	Bi-directional with programmable strength internal pull-up/down	Programmable Input/Output Line
5	Pio4	Bi-directional with programmable strength internal pull-up/down	Programmable input/output line or Optionally BT_Priority/Ch_Clk output for co-existence signalling
6	Pio5	Bi-directional with programmable strength internal pull-up/down	Programmable input/output line or Optionally BT_Active output for co-existence signalling
7	Pio6	Bi-directional with programmable strength internal pull-up/down	Programmable input/output line or Optionally WLAN_Active/Ch_Data input for co-existence signalling
8	Pio7	Bi-directional with programmable strength internal pull-up/down	Programmable Input/Output Line
9	Pio8	Bi-directional with programmable strength internal pull-up/down	Programmable Input/Output Line
10	Pio9	Bi-directional with programmable strength internal pull-up/down	Programmable Input/Output Line
11	Pio10	Bi-directional with programmable strength internal pull-up/down	Programmable Input/Output Line
12	Pio11	Bi-directional with programmable	Programmable Input/Output Line
		•	•

		strength internal pull-up/down	
32	Aio0	Bi-directional	Programmable input/output line
31	Aio1	Bi-directional	Programmable input/output line
			internal pull-up Reset if low. Input
30	RESET	CMOS input with weak internal pull-up	debounced so must be low for ${>}5\mathrm{ms}$ to
			cause a reset
28	SPI_CSB	CMOS input with weak internal pull-up	Chip select for Synchronous Serial
20	5F1_C5b	CMOS Input with weak internal pull-up	Interface active low
27	SPI_CLK	CMOS input with weak internal	Serial Peripheral Interface clock
21	SFI_CLK	pull-down	Serial relipheral interface clock
26	SPI_MOSI	CMOS input with weak internal	Serial Peripheral Interface data
20	511_M051	pull-down	input
29	SPI_MISO	CMOS output, tri-state, with weak	Serial Peripheral Interface data
29	5F1_M150	internal pull-down	output
21	Vref-Filter		Filter Capacitor for 1.8V
20	Vcc	Power Supply	+3.3V Power Supply.
	GND	(Other)	Ground

6. Electrical Specifications

6.1 Input/Output Terminal Characteristics

Dirital Tarminala	Min	Т	Maria	II.
Digital Terminals	Min	Тур	Max	Unit
Input Voltage Levels				
VIL input logic level low 2.7V \leq Vcc \leq 3.0V	-0.4	_	+0.8	V
VIH input logic level high	0.7Vcc	_	Vcc+0.4	V
Output Voltage Levels				
VOL output logic level low			0.9	V
(lo = 4.0mA), 2.7V \leq Vcc \leq 3.0V	_	_	0.2	v
VOH output logic level high	$V_{0,0} = 0$			V
(lo = -4.0mA), 2.7V \leq Vcc \leq 3.0V	Vcc-0.2	_	_	v
Input and Tri-state Current with				
Strong pull-up	-100	-40	-10	μA
Strong pull-down	+10	+40	+100	μA
Weak pull-up	-5.0	-1.0	-0.2	μA
Weak pull-down	+0.2	+1.0	+5.0	μA
I/O pad leakage current	-1	0	+1	μA
CI Input Capacitance	1.0	-	5.0	pF

6.2 Auxilliary ADC

Auxiliary ADC	Min	Тур	Max	Unit
Resolution	_	_	8	Bits

Input voltage range (LSB size = Vref/255)	0	-	Vref	V
Accuracy INL(Guaranteed monotonic)	-1	_	1	LSB
Accuracy DNL (Guaranteed monotonic)	0	_	1	LSB
Offset	-1	_	1	LSB
Gain Error	-0.8	-	0.8	%
Input Bandwidth	_	100		kHz
Conversion time	_	2.5	Ι	μs
Sample rate(a)	-	_	700	Samples/s

6.3 Absolute Maximum ratings

Absolute maximum ratings for supply voltage and voltages on digital and analogue pins of the Module are listed below; exceeding these values will cause permanent damage.

Parameter	Min	Max	Unit
Peak current of power supply	0	75	mA
Voltage at digital pins	-0.3	3.6	V
Voltage at POWER pin	2.7	3.6	V

Operation Mode	Connection Type	UART Rate (kbps)	Average	Unit
Page scan	-	115.2	0.42	mA
Inquiry and page scan	-	115.2	0.76	mA
ACL No traffic	Master	115.2	4.60	mA
ACL With file transfer	Master	115.2	10.3	mA
ACL No traffic	Slave	115.2	17.0	mA
ACL With file transfer	Slave	115.2	24.7	mA
ACL 40ms sniff	Master	38.4	2.40	mA
ACL 1.28s sniff	Master	38.4	0.37	mA
SCO HV1	Master	38.4	39.2	mA
SCO HV3	Master	38.4	20.3	mA
SCO HV3 30ms sniff	Master	38.4	19.8	mA
ACL 40ms sniff	Slave	38.4	2.11	mA
ACL 1.28s sniff	Slave	38.4	0.42	mA
Parked 1.28s beacon	Slave	38.4	0.20	mA
SCO HV1	Slave	38.4	39.1	mA
SCO HV3	Slave	38.4	24.8	mA
SCO HV3 30ms sniff	Slave	38.4	19.0	mA
Standby Host connection(a)	-	38.4	40	uA
Reset (RESETB low) (a)	_	_	34	uA

6.4 Power Consumption (Don't use AP)

(a) Low power mode on the linear regulator is entered and exited automatically when the chip enters/leaves Deep Sleep mode .

(b) Add $0 \sim 100$ mA if use AP.

7. Radio Characteristics - Basic Data Rate

Important Notes

BlueCore4 meets the Bluetooth v2.1 + EDR specification when used in a suitable application circuit between -40° C and +105° C.

 $\ensuremath{\mathsf{Tx}}$ output is guaranteed to be unconditionally stable over the guaranteed temperature range.

7.1 Transmitter

Radio Characteristics Vcc = 3.3V Temperature = $+20^{\circ}$ C

	Min	Тур	Max	Bluetooth Specification	Unit
Maximum RF transmit power ⁽¹⁾⁽²⁾	_	15	-	0 to $+20^{(3)}$	dBm
Variation in RF power over temperature range with compensation enabled $(\pm)^{\scriptscriptstyle(4)}$	_	1.5	_	-	dB
Variation in RF power over temperature range with compensation disabled (±) $^{\scriptscriptstyle (4)}$	l	2	_	_	dB
RF power control range	-	35	-	≥16	dB
RF power range control resolution $^{\scriptscriptstyle{(5)}}$	Ι	0.5	-	_	dB
20dB bandwidth for modulated carrier		780	-	≤1000	kHz
Adjacent channel transmit power F=F0 $\pm 2 \text{MHz}^{\tiny (6)~(7)}$	-	-40	-	≤-20	dBm
Adjacent channel transmit power F=F0 $\pm3\textrm{MHz}^{\scriptscriptstyle(6)(7)}$	-	-45	-	≤-40	dBm
Adjacent channel transmit power F=F0> $\pm3 M {\rm Hz}^{\rm \scriptscriptstyle (6)(7)}$	-	-50	-	≤-40	dBm
Δ flavg .Maximum Modulation.	_	165	_	140< ∆flavg <175	kHz
Δ f2max .Minimum Modulation.	_	150	-	≥115	kHz
Δf2avg / Δf1avg	_	0.97	-	≥0.80	-
Initial carrier frequency tolerance	-	6	-	± 75	kHz
Drift Rate	_	8	_	≤20	kHz /50µS
Drift (single slot packet)	-	7	-	≤25	kHz
Drift (five slot packet)	-	9	-	≪40	kHz
2 nd Harmonic content	_	-65	-	≤-30	dBm
3 rd Harmonic content	-	-45	-	≤-30	dBm

Notes:

(1) BlueCore4 firmware maintains the transmit power to be within the Bluetooth v2.1+ EDR specification limits.

(2) Measurement made using a PSKEY_LC_MAX_TX_POWER setting corresponds to a PSKEY_LC_POWER_TABLE power table entry of 63.

(3) Class 1 RF transmit power range, Bluetooth v2.1 + EDR specification.

(4) To some extent these parameters are dependent on the matching circuit used, and its behaviour over temperature. Therefore these parameters may be beyond CSR's direct control. (5) Resolution guaranteed over the range -5dB to -25dB relative to maximum power for Tx Level >20.

(6) Measured at FO= 2441MHz.

(7) Up to three exceptions are allowed in the Bluetooth v2.1 + EDR specification. BlueCore4 is guaranteed to meet the ACP performance as specified by the Bluetooth v2.1 + EDR specification.

Radio Characteristics Vcc = 3.3V Temperature = $+20^{\circ}$ C (Continued) Emitted power in cellular bands measured at the unbalanced port of the balun. Output power $\leq 4dBm$. Unit = dBm/Hz

Frequency (GHz)	Min	Тур	Max	Cellular Band
$0.869 - 0.894^{(1)}$	-	≤-145	-	GSM 850
$0.869 - 0.894^{(2)}$	-	≤-145	-	CDMA 850
$0.925 - 0.960^{(1)}$	-	≤-145	-	GSM 900
$1.570 - 1.580^{(3)}$	-	≤-145	-	GPS
$1.805 - 1.880^{(1)}$	-	≤-145	-	GSM 1800 / DCS 1800
$1.930 - 1.990^{(4)}$	-	≤-145	-	PCS 1900
$1.930 - 1.990^{(1)}$	-	≤-145	-	GSM 1900
$1.930 - 1.990^{(2)}$	-	≤-145	Ι	CDMA 1900
$2.\ 110\ -\ 2.\ 170^{(2)}$	-	≤-142	-	W-CDMA 2000
2. 110 - 2. $170^{(5)}$	_	≤-144	-	W-CDMA 2000

Notes:

- (1) Integrated in 200kHz bandwidth and then normalised to a 1Hz bandwidth.
- (2) Integrated in 1.2MHz bandwidth and then normalised to a 1Hz bandwidth.
- (3) Integrated in 1MHz bandwidth. and then normalised to a 1Hz bandwidth
- (4) Integrated in 30kHz bandwidth and then normalised to a 1Hz bandwidth.
- (5) Integrated in 5MHz bandwidth and then normalised to a 1Hz bandwidth.

7.2 Receiver

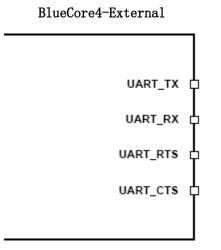
Radio Characteristics Vcc = 3.3V Temperature = $+20^{\circ}$ C

	Frequency (GHz)	Min	Тур	Max	Bluetooth Specification	Unit
Samaitinity at 0.1% DED	2.402	-	-84	-		
Sensitivity at 0.1% BER for all packet types	2.441	-	-84	-	≪-70	dBm
	2.480	-	-85	-		
Maximum received signal at 0.1% BER		-	10	-	≤-20	dBm
	Frequency	Min	Min Tun	Max	Bluetooth	Unit
	(GHz)	Min Typ	Max	Specification		
Continuous power required to block	30 - 2000	-	TBD	-	≪-10	
Bluetooth reception (for sensitivity of	2000 - 2400	-	TBD	-	≤-27	dDm
$-67\mathrm{dBm}$ with 0.1% BER) measured at the	2500 - 3000	-	TBD	-	≤-27	dBm
unbalanced port of the balun.	3000 - 3300	-	TBD	-	≪-10	
C/I co-channel		-	6	_	≤11	dB

Adjacent channel selectivity C/I F=F0 $\pm 1 \mbox{MHz}^{(1)~(2)}$	_	-5	-	≪0	dB
Adjacent channel selectivity C/I F=F0 $-1 M \text{Hz}^{\scriptscriptstyle (1)~(2)}$	-	-4	-	$\leqslant 0$	dB
Adjacent channel selectivity C/I F=F0 +2MHz $^{\scriptscriptstyle (1)}$		-38	-	≤-30	dB
Adjacent channel selectivity C/I F=F0 $-2M\text{Hz}^{\scriptscriptstyle(1)~(2)}$	-	-23	-	≤-20	dB
Adjacent channel selectivity C/I F ${\geqslant}F0$ +3MHz $^{\scriptscriptstyle (1)}$	-	-45	-	≪-40	dB
Adjacent channel selectivity C/I F ${\leq}F0$ $-5MHz^{\scriptscriptstyle (1)}$		-44	-	≪-40	dB
Adjacent channel selectivity C/I $F{=}FImage^{\scriptscriptstyle (1)~(2)}$	-	-22	-	≪-9	dB
Maximum level of intermodulation interferers $^{\scriptscriptstyle (3)}$	-	-30	_	≥-39	dBm
Spurious output level (4)	-	TBD	-	-	dBm/Hz

Notes:

(1) Up to five exceptions are allowed in the Bluetooth v2.1 + EDR specification. BlueCore4 is guaranteed to meet the C/I performance as specified by the Bluetooth v2.1 + EDR specification.


(2) Measured at FO = 2441 MHz

(3) Measured at f1-f2 = 5MHz. Measurement is performed in accordance with Bluetooth RF test RCV/CA/05/c. i.e. wanted signal at -64dBm

(4) Measured at the unbalanced port of the balun. Integrated in 100kHz bandwidth and then normalized to 1Hz. Actual figure is typically below TBD dBm/Hz except for peaks of -52dBm inband at 2.4GHz and \leq 80dBm at 3.2GHz

8. UART Interface

BlueCore4-External Universal Asynchronous Receiver Transmitter (UART) interface provides a simple mechanism for communicating with other serial devices using the RS232 standard⁽¹⁾.

Figure 11.12: Universal Asynchronous Receiver

Four signals are used to implement the UART function, as shown in Figure 11.12. When BlueCore4-External is connected to another digital device, UART_RX and UART_TX transfer data between the two devices. The remaining two signals, UART_CTS and UART_RTS, can be used to implement RS232 hardware flow control where both are active low indicators. All UART connections are implemented using CMOS technology and have signalling levels of OV and Vcc.

UART configuration parameters, such as Baud rate and packet format, are set using BlueCore4-External software.

Notes:

In order to communicate with the UART at its maximum data rate using a standard PC, an accelerated serial port adapter card is required for the PC.

(1) Uses RS232 protocol but voltage levels are OV to VDD_USB, (requires external RS232 transceiver chip)

Parameter		Possible Values	
Baud Rate	Minimum	1200 Baud (≤2%Error)	
	MINIMUM	9600 Baud (≤1%Error)	
	Maximum	3.0MBaud (≤1%Error)	
Flow Control		RTS/CTS or None	
Parity		None, Odd or Even	
Number of Stop Bits		1 or 2	
Bits per channel		8	

Table 11.7: Possible UART Settings

The UART interface is capable of resetting BlueCore4-External upon reception of a break signal. A Break is identified by a continuous logic low (OV) on the UART_RX terminal, as shown in Figure 11.13. If tBRK is longer than the value, defined by the PS Key PSKEY_HOST_IO_UART_RESET_TIMEOUT, (0x1a4), a reset will occur.

This feature allows a host to initialise the system to a known state. Also, BlueCore4-External can emit a Break character that may be used to wake the Host.

Figure 11.13: Break Signal

Note:

The DFU boot loader must be loaded into the Flash device before the UART or USB interfaces can be used. This initial flash programming can be done via the SPI.

Table 11.3 shows a list of commonly used Baud rates and their associated values for the Persistent Store Key PSKEY_UART_BAUD_RATE (0x204). There is no requirement to use these standard values. Any Baud rate within the supported range can be set in the Persistent Store Key according to the formula in Equation 11.7.

Baud Rate = PSKEY_UART_BAUD_RATE / 0.004096

Equation 11.7: Baud Rate

Baud Rate	Persistent	Emmon	
	Hex	Dec	Error
1200	0x0005	5	1.73%
2400	0x000a	10	1.73%
4800	0x0014	20	1.73%
9600	0x0027	39	-0.82%

10000	0.0046	70	0 45%
19200	0x004f	79	0.45%
38400	0x009d	157	-0.18%
57600	0x00ec	236	0.03%
76800	0x013b	315	0.14%
115200	0x01d8	472	0.03%
230400	0x03b0	944	0.03%
460800	0x075f	1887	-0.02%
921600	0x0ebf	3775	0.00%
1382400	0x161e	5662	-0.01%
1843200	0x1d7e	7550	0.00%
2764800	0x2c3d	11325	0.00%

Table 11.8: Standard Baud Rates

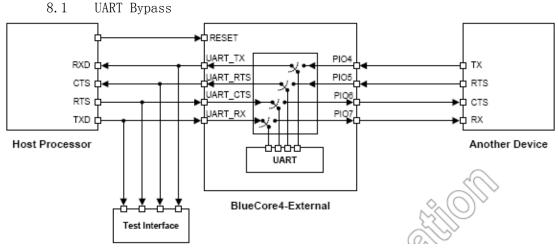


Figure 11.14: UART Bypass Architecture

8.2 UART Configuration While RESET is Active

The UART interface for BlueCore4-External while the chip is being held in reset is tri-state. This will allow the user to daisy chain devices onto the physical UART bus. The constraint on this method is that any devices connected to this bus must tri-state when BlueCore4-External reset is de-asserted and the firmware begins to run.

8.3 UART Bypass Mode

Alternatively, for devices that do not tri-state the UART bus, the UART bypass mode on BlueCore4-External can be used. The default state of BlueCore4-External after reset is de-asserted, this is for the host UART bus to be connected to the BlueCore4-External UART, thereby allowing communication to BlueCore4-External via the UART.

In order to apply the UART bypass mode, a BCCMD command will be issued to BlueCore4-External upon this, it will switch the bypass to PIO[7:4] as shown in Figure 11.14. Once the bypass mode has been invoked, BlueCore4-External will enter the deep sleep state indefinitely.

In order to re-establish communication with BlueCore4-External, the chip must

be reset so that the default configuration takes affect.

It is important for the host to ensure a clean Bluetooth disconnection of any active links before the bypass mode is invoked. Therefore it is not possible to have active Bluetooth links while operating the bypass mode.

8.4 Current Consumption in UART Bypass Mode

The current consumption for a device in UART Bypass Mode is equal to the values quoted for a device in standby mode.

9. I/O Parallel Ports

Fifteen lines of programmable bi-directional input/outputs (I/O) are provided. PIO[11:8] and PIO[3:0] are powered from Vcc. PIO[7:4] are powered from Vcc. AIO [2:0] are powered from Vref.

PIO lines can be configured through software to have either weak or strong pull-ups or pull-downs. All PIO lines are configured as inputs with weak pull-downs at reset.

PIO[0] and PIO[1] are normally dedicated to RXEN and TXEN respectively, but they are available for general use.

Any of the PIO lines can be configured as interrupt request lines or as wake-up lines from sleep modes. PIO[6] or PIO [2] can be configured as a request line for an external clock source. This is useful when the clock to BlueCore4-External is provided from a system application specific integrated circuit (ASIC).

BlueCore4-External has three general purpose analogue interface pins, AIO[0], AIO[1] and AIO[2]. These are used to access internal circuitry and control signals. One pin is allocated to decoupling for the on-chip band gap reference voltage, the other three may be configured to provide additional functionality.

Auxiliary functions available via these pins include an 8-bit ADC and an 8-bit DAC. Typically the ADC is used for battery voltage measurement. Signals selectable at these pins include the band gap reference voltage and a variety of clock signals; 48, 24, 16, 8MHz and the XTAL clock frequency. When used with analogue signals the voltage range is constrained by the analogue supply voltage (1.8V). When configured to drive out digital level signals (clocks) generated from within the analogue part of the device, the output voltage level is determined by Vref (1.8V).

Important Note:

CSR cannot guarantee that terminal functions PIOs remain the same. Please refer to the software release note for the implementation of these PIO lines, as they are firmware build specific.

10. RESETB

BlueCore4 Module may be reset from several sources: power on reset, a UART break character or via a software configured watchdog timer.

The power on reset occurs when the VDD_CORE supply falls below typically 1.5V

and is released when VDD_CORE rises above typically 1.6V.

At reset the digital I/O pins are set to inputs for bi-directional pins and outputs are tri-stated. The PIOs have weak pull-downs.

Following a reset, BlueCore4-External assumes the maximum XTAL_IN frequency, which ensures that the internal clocks run at a safe (low) frequency until BlueCore4-External is configured for the actual XTAL_IN frequency. If no clock is present at XTAL_IN, the oscillator in BlueCore4-External free runs, again at a safe frequency.

10.1 Pin States on Reset

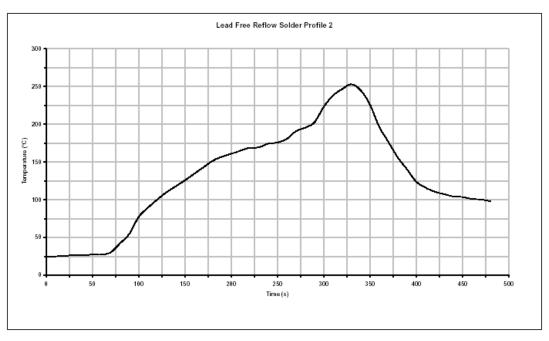
Pin Name	State: BlueCore4-External
PI0[6:2]	Input with weak pull-down
UART_TX	Output tri-stated with weak pull-up
UART_RX	Input with weak pull-down
UART_RTS	Output tri-stated with weak pull-up
UART_CTS	Input with weak pull-down
SPI_CSB	Input with weak pull-up
SPI_CLK	Input with weak pull-down
SPI_MOSI	Input with weak pull-down
SPI_MISO	Output tri-stated with weak pull-down
AIO[1]	Output, driving low

Table 11.15: Pin States of BlueCore4-External on Reset

10.2 Status after Reset

The chip status after a reset is as follows:

- Warm Reset: Baud rate and RAM data remain available
- Cold Reset(1): Baud rate and RAM data not available


Note:

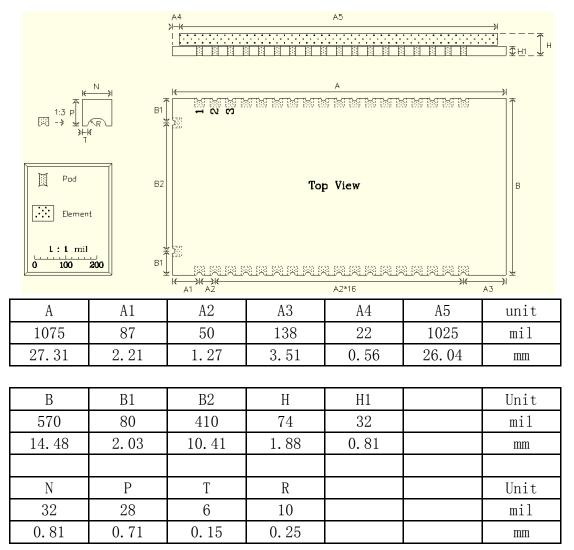
(1) Cold Reset constitutes one of the following:

- Power cycle
- System reset (firmware fault code)

11. Solder Profiles

Composition of the solder ball: Sn 95.5%, Ag 4.0%, Cu 0.5%

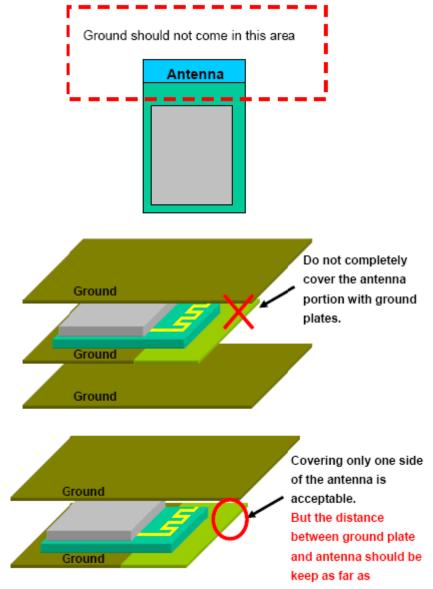
Typical Lead-Free Re-flow Solder Profile

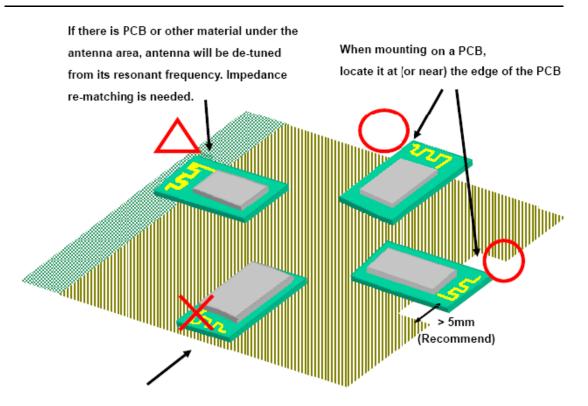

Key features of the profile:

- Initial Ramp = 1-2.5° C/sec to 175° C±25° C equilibrium
- Equilibrium time = 60 to 180 seconds
- Ramp to Maximum temperature (250° C) = 3° C/sec max.
- Time above liquidus temperature (217°C): 45-90 seconds
- Device absolute maximum reflow temperature: 260° C

Devices will withstand the specified profile. Lead-free devices will withstand up to three reflows to a maximum temperature of 260° C.

Notes: They need to be baked prior to mounting.


12. Physical Dimensions



while L > 100mil Error = ± 10 mil, while L<= 100mil Error = $\pm 10\%$

13. Guide for Antenna Radiation

In order to achieve longest communication range, please keep the area surrounding antenna free of grounding or metal housing.

If mounted at an inner portion of the PCB grounded, no sufficient antenna performance will be available.

PCB with Ground Plane
PCB without Ground Plane

Chongqing Jinou Science & Technology Development Co., Ltd.

Add: Overseas students pioneer park,No.71 Kecheng Rd,Jiulongpo District,400039,Chongqing,China Tel: 86-23-68903066

Web: www.oemblue.com E-mail: info@iotwearing.com info@oemblue.com